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Need to reduce CO, emissions

m No alternative to concrete,

m No practical alternative
to Portland cement clinker at scale,

m Best way to reduce CO, emissions fast and at scale
is increase use of blended cements

m BUT final product is concrete:
m Need to take concrete performance into account
= Lower clinker factor not always better

m How to ensure we have a low permeability,
durable concrete
with adequate strength
at minimal CO,?

Embodied CO2 (kgCO2/kg)

Embodied Energy (MJ/kg)
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Eco-efficient cements:

Potential economically viable
solutions for a low-CO2
cement-based materials industry




Reduction

needed through the value chain

Reduce CO,

from clinker
production

Reduce clinker
in cement

Reduce
concrete
in building

Reduce cement
in concrete

More efficient
(re)use of
buildings

e SCMs

Aggregate grading
Good admixtures
Use filler
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Availability of SCMs

silica fume | Classic SCMs — fly ash and slag are
waste glass | only around 15% of current cement
production, will drop to < 10% in near
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LC3 concept

= Blended with SCMs will be best solution for sustainable cements for
foreseeable future

= Only material really potentially available in viable quantities is
calcined clay.

= Synergetic reaction of calcined clay and limestone allows high levels

3

of substitution:

Limestone
Calcined
Clay
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What is LC3

Mass proportion (%)
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LC3 is a family of cements,

the figure refers to
the clinker content

Compressive strength

(MPa)

70

m 1day

W 7 days
W 28 days
W 90 days

PC LC3-50

50% less clinker

40% less CO,

Similar strength

Better chloride resistance
Resistant to alkali silica reaction
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Why can we get such high replacement levels

= Calcination of
kaolinite at
700-850°C gives
metakaolin: much
more reactive than
glassy SCMs
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Synergetic reaction of
Alumina in metakaolin with
limestone to give space

filling hydrates
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Benchmark test of clay strength

m  Compressive strength EN 196-1at 1, 3,7, 28,90d 80 -

¢ 90 days LC3-50

m Linear increase of strength with the MK content of 70_-
calcined clays

m Similar strength to PC for blends containing 40% of
calcined kaolinite from 7d onwards

m At 28 and 90 days, little additional benefit >60%

®  Minor impacts of fineness, specific surface and
secondary phases

w

Compressive strength (MPa)
NN

Calcined kaolinite content (%)

Calcined kaolinite content overwhelming parameter
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Chloride ingress & migration
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Hydration is about space filling:

This is a combination of:

Reactive materials
Water / Cement ratio
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Relationship of pore filling to properties
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Mechanical

m Strength and other mechanical properties correlate with porosity in a fairly
straightforward way.
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Gel-space ratio (-) / Gel = All Hydrates + SCMs

Relationship to
“gel-space ratio” = f(1/porosity)

A lot of scatter in part due to
experimental measurement,
but clearly shows space filling /
porosity dominates

n
Y
i
—
[ml [
HE



Chloride ingress more complex:

General approach

Decouple . Consider “simple” __, Use/adapt methods
variables and diversified for saturated pastes

Systems ‘ |

LC3-50 Systems

50% CEM |

+ 30% Calcined clay (Buhj, 45%)
+ 15% Limestone (Durcal5)

+ 2 % Gypsum

OPC Systems

100% CEM |
(Holcim)

Sample
preparation
Vacuum mixing

Water-curing for 28d
(in “pore solution”)




Chloride ingress in cementitious pastes
> Bulk resistivity as a rapid indicator

Porosity

Pore solution

= Very rapid indicator of chloride penetration potential (~7s)
=  Well correlated to standardized methods (e.g. RCPT)
=  Threshold values from Shane 1999

» Bulk resistivity is much higher for LC3-50

Chloride Penetration
Potential (Shane 1999)
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Chloride ingress in cementitious pastes
> Mini-migration tests

Porosity

= Results for OPC and LC3-50 systems Pore solution

» Results for OPC systems in agreement with Skl
previous results from Truc et al. 2000 ()
» Significantly lower diffusion coefficients for
LC3-50 systems
» Same trends as bulk resistivity results
» Higher bulk resistivity = lower CI- diffusion
» CI binding does not change the trend 20
m w/b=0.3
2.5 B w/b=0.4
50 m w/b=0.5

=
o

D.s *10'2 (m?/s)
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Truc et al., Cement and Concrete research 30, 2000 OPC LC3-50
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Links to microstructure
> Pore classes

= TH NMR analyses

Porosity
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Proton, *H Nuclear Magnetic Resonance

Surface physics

a unique technique which nd chemistry

can analyse porosity
using water as a probe

no drying is necessary

in fact the pores must
contain water to give a
signal

many, in-situ
measurements

on same sample Water in large pores

Water in small pores
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Experimental procedure

Paraffine

White cement
W/C =0.40
Sealed cure

Glass cylinder

White cement is preferred
as paramagnetic iron
degrades signal

Mixing 300 days
L | >




Signal Intensity (a. u.)
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Interhydrate pores

Bazzoni 2014
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Links to microstructure

> Pore classes

u"-}-!‘;” 2a00 Porosity
-‘aA = “l""“k 3 a1
4 ~ 16
= 'TH NMR analyses b 1l B =orcan
NG m OPC@04
= The method L W L 300N B 7%12 B OPC@05
. . 8010
= Water families and pore size ..o 8
=  Amount of each pore class A
S 4
» Increasing w/b increases the amount 2
of interhydrate + capillary water 0
Interlayer  Gel Pores Interhydrate Capillary
» Which water is responsible for CI- 1 Gen
iffusion” mLG@04
diffusion? o
§12 mL33@05
. 8010
» The LC3-50 systems contains less C- g,
S-H interlayer water, but more geland 2
interhydrate pores compared to OPC g,
systems. ,
0

...hot the reason for lower chloride diffusion in LC3...

Interlayer  Gel Pores Interhydrate Capillary
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Links to microstructure

> Tortuosity of the porous network

= Tortuosity from the formation factor

23

Pp - Bulk resistivity (Q.m)

Po : Pore solution resistivity (Q.m)

0y : Pore solution conductivity (Q*m-)
F : Formation factor (-)

Tp: Diffusion tortuosity (-)

¢ : Porosity (-)

Porosity
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Links to microstructure
> Tortuosity of the porous network

= Tortuosity from the formation factor
= Results

» Although the amount of pores (gel+
interhydrate+capillary) is significantly
higher for LC3-50 systems, the “tortuosity”
of the porous network is 2-3 times higher
than for OPC systems.

» This tortuosity thus appear to be an
important parameter affecting the diffusion
coefficient.

> But these high values cannot be
explained by simple geometry

300
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=
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50

Porosity

ore solution

OPC LG3-50
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These tortuosity values not a result of geometry
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Narrow pores, ionic gradients.

= Narrow channels dominate solution filled porosity
= Qverlapping concentration gradients will dramatically affect lon mobility

. EPFL g



Links to microstructure

> Pore solution composition

27

by ICP-EOS and IC

» The ionic concentrations of the pore solution
of LC3 systems is much lower than that of

OPC systems.

= |onic concentration and conductivity
Characterization of the pore solution
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| = 0.3M NaOH —
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——- [NaOH];y=0.2M,[NaOH]=0.1M
—— [NaOH];,=0.2M,[NaOH]exe=0.2M

0.1M NaOH

» From simulation, the migration current and the
chloride diffusion are function of the OH"
concentration in the pore solution.
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Georget, 2019
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Links to microstructure

= Current understanding, for the investigated systems:
> Diffusion coefficient vs. porosity vs. ionic concentrations

Effect of
“tortuosity”

s + pore solution

OPC LC3-50

= However it is not clear is the origin of these “tortuosities”
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Conclusions

m Need to optimise systems to reduce CO2 emissions
m Need to understand how different reactive ingredients contribute to space filling
m “Hierarchy” of reactivity:
Alite > MK ~SF ~slag > flyash > belite

m Reduction of porosity roughly linear impact on strength
m For chloride ingress, other factors play a strong role:

= Alkaliions in pore solution

= Interaction of ions with surface of hydrates.
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